Environmentally Friendly Alternatives Exist for Li-ion Batteries

Lithium Ion Battery

 

Physics researchers at Virginia Commonwealth University have discovered that most of the electrolytes used in lithium-ion batteries, commonly found in consumer electronic devices, are superhalogens, and that the vast majority of these electrolytes contain toxic halogens.

 

Additionally, the researchers also found that the electrolytes in lithium-ion batteries (also known as Li-ion batteries) could be replaced with halogen-free electrolytes that are both nontoxic and environmentally friendly.

 

“The significance [of our findings] is that one can have a safer battery without compromising its performance,” said lead author Puru Jena, Ph.D., distinguished professor in the Department of Physics of the College of Humanities and Sciences. “The implication of our research is that similar strategies can also be used to design cathode materials in Li-ion batteries.”

 

The article, “Superhalogens as Building Blocks of Halogen-free Electrolytes in Li-ion Batteries,” by Jena, postdoctoral researcher Santanab Giri, Ph.D., and then-graduate student Swayamprabha Behera, Ph.D., will appear in a soon to be released issue of the chemistry journal Angewandte Chemie International Edition, which has posted the study online.

 

Jena said he hopes that the article’s findings will lead to production of safer, less toxic batteries.

 

“We hope that our theoretical prediction will stimulate experimentalists to synthesize halogen-free salts which will then lead manufacturers to use such salts in commercial applications,” he said.

 

The researchers also discovered that the procedure outlined for Li-ion batteries is equally valid for other metal-ion batteries, such as sodium-ion or magnesium-ion batteries.

 

Jena became interested in the topic several months ago when he saw a flyer on Li-ion batteries that mentioned the need for halogen-free electrolytes.

 

“I had not done any work on Li-ion batteries at the time, but I was curious to see what the current electrolytes are,” he said. “I found that the negative ions that make up the electrolytes are large and complex in nature and they contain one less electron than what is needed for electronic shell closure.”

 

Jena had already been working for more than five years on superhalogens, a class of molecules that mimic the chemistry of halogen atoms.

 

“I knew of many superhalogen molecules that do not contain a single halogen atom,” he said. “My immediate thought was first to see if the anionic components of the current electrolytes are indeed superhalogens. And if, so, do the halogen-free superhalogens that we knew serve the purposes halogen-free electrolytes? Our research proved that to be the case.”

 

If you enjoyed this article and need a professional writer for your own blog, please feel free to send me an email, or check out my profile on oDesk.

Advertisements

Please join the conversation with your input.

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s