New Innovative Substance to be used in Solar Cells and Flexible Electronics

Flexible-Solar-Cells

 

Physicists at the University of Kansas have created an innovative substance from two different atomic sheets that interlock like Lego toy bricks. The researchers said the new material, made of a layer of graphene and a layer of tungsten disulfide, could be used in solar cells and flexible electronics.

 

Hsin-Ying Chiu, assistant professor of physics and astronomy, and graduate student Matt Bellus created the new material using “layer-by-layer assembly” as a versatile bottom-up nanofabrication technique.

 

Then, Jiaqi He, a visiting student from China, and Nardeep Kumar, a graduate student who now has moved to Intel Corp., investigated how electrons move between the two layers through ultrafast laser spectroscopy in KU’s Ultrafast Laser Lab, supervised by Hui Zhao, associate professor of physics and astronomy.

 

“To build artificial materials with synergistic functionality has been a long journey of discovery,” Chiu said. “A new class of materials, made of the layered materials, has attracted extensive attention ever since the rapid development of graphene technology. One of the most promising aspects of this research is the potential to devise next-generation materials via atomic layer-level control over its electronic structure.”

 

According to the researchers, the approach is to design synergistic materials by combining two single-atom thick sheets, for example, acting as a photovoltaic cell as well as a light-emitting diode, converting energy between electricity and radiation. However, combining layers of atomically thin material is a thorny task that has flummoxed researchers for years.

 

“A big challenge of this approach is that, most materials don’t connect together because of their different atomic arrangements at the interface — the arrangement of the atoms cannot follow the two different sets of rules at the same time,” Chiu said.

 

“This is like playing with Legos of different sizes made by different manufacturers. As a consequence, new materials can only be made from materials with very similar atomic arrangements, which often have similar properties, too. Even then, the arrangement of atoms at the interface is irregular, which often results in poor qualities.”

 

The use of layered materials, like the ones developed by the KU researchers, provide a solution for this problem. The new material features two layers where each atomic sheet is composed of atoms bound strongly with their neighbors.

 

Unlike the conventional materials formed by atoms that are strongly bound in all directions, the two atomic sheets are themselves only weakly linked to each other by the so-called van der Waals force, the same attractive phenomenon between molecules that allows geckos to stick to walls and ceilings.

 

“There exist about 100 different types of layered crystals — graphite is a well-known example,” Bellus said. “Because of the weak interlayer connection, one can choose any two types of atomic sheets and put one on top of the other without any problem. It’s like playing Legos with a flat bottom. There is no restriction. This approach can potentially produce a large number of new materials with combined novel properties and transform the material science.”


The research groups led by Chiu and Zhao are trying to apply this Lego approach to other materials. For example, by combining two materials that absorb light of different colors, they can make materials that react to diverse parts of the solar spectrum.

 

If you enjoyed this article and need a professional writer for your own blog, please feel free to send me an email, or check out my profile on oDesk.

Advertisements

Please join the conversation with your input.

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s